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For any finitely connected open domain D bounded by Jordan curves. it is
proved that there exists a function in A (D). the space of functions analytic in D and
continuous on D. having a maximum modulus of at most unity and taking given
values of modulus at most unity at a finite number of given points on rD. Explicit
constructions of such functions are given for the special cases of a disc. a domain
between two circles. an elliptical ring. and an ellipse with a slit between its foci. It
is hence proved that the projection In from A (D) onto the subspace of polynomials
of fixed degree n - I which interpolate in n given points of i'D. has a Chebyshev
norm equal to the supremum of the sum of the absolute values of the fundamental
polynomials in the Lagrange interpolation formula. Similar results are also proved
in the special cases of a domain between two circles with centres (II' (, and an
ellipse with a slit between its foci +I. when the interpolation subspaces are more
appropriately chosen to be. respectively. polynomials of degrees 11 in (z - (,) 'and
m - I in z - (0' and functions of the form An(z) + j(z' - I) Bn ,(z). where An
and Bn ,are polynomials of respective degrees 11 and n - I.

I. INTRODUCTION

Consider the space A (D) of functions analytic in a finitely connected open
domain D and continuous on D, where the boundary 3D consists of Jordan
curves. Suppose that !(z) E A(D) is interpolated by a polynomial In! of
degree n - I in z at n distinct points Zk (k = I, ... , n) of 3D. where In denotes
the projection operator. Let 11\ denote the complex plane and the positive
integers. respectively.
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Then it is well known (see [1]) that

where

IIIII = 1I/IIce = max III max III,
D iJD'

and/~ is a minimax polynomial approximation of degree n 1. Hence, IIInl1
bounds the relative closeness of I nl to a minimax approximation, and so its
numerical value is of practical importance, as also are its properties as a
function of jzd. Now

n

(Inl)(z) = I I(zk) lk(z),
k=l

(1)

where lk(z) are the fundamental polynomials of the Lagrange interpolation
formula

(2)

Assuming that attention is restricted to functions for which 11/11= 1, we
deduce from (1) that

and, hence,

(3)

where

(4 )

If z* is a point of attainment of this supremum and if there exists an analytic
function/(z), with 1III1 = 1, such that

where

sgn z = z/Izl,

(k = 1,... , n), (5)

then it follows from (1) that



and, hence, that
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(6)

The formula (4) for }'" is computationally convenient and, indeed, has
been used successfully, for example, by Geddes 121 on the ellipse to provide
numerical bounds via (3) for Ill" Ii and, hence, also for III-I~ Ii. However. it
follows from (6) that y" is actually equal to (rather than just a bound for)
ill" If, and so the theory is tightened. provided that an anaJytic function l(z)
of unit norm does indeed exist which satisfies (5).

In deriving the formula (6) here. we are following the logic used in
establishing the same formula (in x) for interpolation on the real line (see.
e.g., IJ I). which depends on the existence of a continuous function of norm
unity taking values ± 1 at given points. However. while the latter may be
constructed by simply joining up the values ± I by straight lines. there is no
such trivial realisation of an analytic function with the required properties in
the complex plane. In this paper we construct such a function for any n-tuply
connected bounded domain in bounded by n Jordan curves. We first deal
with such domains when the bounding Jordan curves are circles and then
extend these results to the general situation by an appropriate appeal to well
known results on conformal mapping.

Before proceeding further, we should make due reference to some earlier
related work. In the case of the unit disc. a theorem of Rudin 131 establishes
the existence of an analytic function of unit norm with the sign property (5 l.
and more recently in an unpublished report Brutman 141 has given a
construction of such a function based on a number of compositions and an
appeal to the Riemann mapping theorem. Our corresponding construction in
Theorem 2.2 and Corollary 3.1 is more general (for a domain bounded by a
number of circles) and more straightforward (in that it consists of a single
explicit polynomial).

2. THE DISC

We first consider the unit disc J = liz! ~ II and then by simple transfor
mations deduce results for a disc in a general position.

LEMMA 2.1. Let z I .... ' Zy be distinct points of:· Define "A(Z, ()

(z - O(zZk- (ZA) (1 (, k (, lV) and put

1\' ~k(Z, =,) I"
, I I IlJA(ZA- Zt) \
i I A
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where mk E IN will be specified later, and set

Piz) = Wk(z) Rk,N(Z),

Then, suppose that for some k, Zk E ail. Given K> 0, e > 0, for all large
mk there is a 0> °such that, if arg(zjzk) = e (0 ~ 101 ~ n), then

(a) IPk(z)1 < 1 -K02

(b) IPk(z)1 < e

(c) Ijl*k, !p/(z)1 = 0(02
)

to the choice ofm/.

(I z 1 = I, I 0 I < 0),

(Izl= 1,0~101~n),

(I Z 1= I, e-4 0) uniformly with respect

l~k(Z, ()I = IZk ei8
- (I lew - (zkl

= 1(e i8
- (Zk)(ei8

- (Zk)l.

Since (Zk = &k one checks easily that

(0-40).

Also,

08 (ll+ei91 )mk I er
mk

IWiZk e
1 )1 = 2 = cos "2

= 1 mk e
2

+ 0(04)
8

Hence, if K >0 is given, there is a 0 >°so that (a) of Lemma 2.1 holds for
all large mk •

On the other hand, there is a K (0 <K < I) such that

where 0 is that specified above. On {I Z I= I} there is a bound for IRk ,N(z) I
depending only on Z 1 , ... , ZN and, hence, if mk is large enough both (a) and (b)
are satisfied.

For 1* k, there is a bound for the modulus of p/(z) with
{~/(Z,Zk)!¢/(Z/,Zk)}2 divided out that depends only on Z.....'ZN. Since the
preceding factor has a double zero at z zk the result (c) of Lemma 2.1
follows. I
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THEOREM 2.2. Let zl"'" zn E 2L1. In the preceding notation, if the
exponents m I"'" mn are suitably large and 0 I , ... , on are any complex
numbers of modulus at most 1 and f(z) is the polynomial

n

f(z) = ,,' 0kPk(Z).
k I

then

Ilfll:::;; L f(Zk) = 0 (11 + I:::;; k:::;; N).

Proof (a) and (c) of Lemma 2.1 cope with the behaviour of f(z) on
(I z i= 1 f near to the points z I' .... Z /I and (b) copes with the remainder of the
unit circle. I

COROLLARY 2.2(i). The result of the theorem holds for any disc
11 z ~ (I :::;; p f. that is, given n points Wi ·' wn with i lVk ~ (I = p (l :::;; k :::;; n)

and wn + I"'" w" E and numbers 0 I , On E of modulus at most 1. then
there is a po(vnomial f(z) such that

Ilfll = max1if(z)j: Iz ~ l;\ :::;;Pt:::;; L

/(w k ) = Ok (1:::;; k:::;; n), /(w k ) 0 (n + I ~ k :::;; N).

Proof Let Zk = (wk - ()/p (l :( k:( N) and define

and set

n

/(Z)= ". 0kQk(Z).
k I

The result of Corollary 2.2(i) now follows from Theorem 2.2. I

COROLLARY 2.2(ii). The result of the theorem holds for any "disc
exterior" {Iz (I?pf, that is, given n points wI ... ·,w" with IWk~(i=p

(1:( k:( n) and wn+ 1 , ••• , w,." E . and numbers °1"", on E of modulus at
most 1, then there is afunctionf(z), which is a polynomial in 1/(z - 0, such
that

Ilfll maxllf(z)l: Iz l;1? pf ~ 1, f(wk ) = Ok (I :( k:::;; n),

f(w k ) =0 (n + 1 :::;; k:( N).
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Proof Let Zk = p/(wk - 0 (1 <. k <. N) and define

and set

n

fez) = L 0kSk(z),
k=1

The result of Corollary 2.2(ii) now follows from Theorem 2.2. I

3. FINITELY CONNECTED DOMAINS BOUNDED BY CIRCLES

The following results from Section 2:

COROLLARY 3.1. Given Ok E C, with lOki <. 1 (k = 1,..., N). Let D be a
finitely connected open domain bounded by circles, and let WI"'" wN be given
distinct points of oD. Then there exists f(z) in A (D) such that

Ilfll <. 1 and f(wk) = Ok (k = 1,... , N).

Proof Dealing with the general case involves rather cumbersome
notation, and so we shall restrict our attention to doubly connected domains.
From our discussion it should be immediately clear how the construction
may be developed in the general case.

Let D be a doubly connected domain with outer boundary Fo=

{Iz - '01 = Po} and inner boundary F1 = {Iz - 'II =PI}' Suppose that
W1'... ,wn EFo and wn +1'oo.,wNEF!. Assume that O"1""'O"NEC and each is
of modulus 1 at most. Define Qk(Z) as in the proof of Corollary 2.2(i).
Define Sk(Z) as in the proof of Corollary 2.2(ii) except that we consider the
Wk in the order Wn + 1''''' WN' W1''''' Wn and not in their natural order as we
did in the earlier proof. Finally, set

n N-n
fez) = L O"kQk(Z) + L 0n+kSk(Z)'

k=! k=!

Thenf(z) is analytic in D and by arguments similar to those in the proofs
of Theorem 2.2 and its corollaries one finds that If(z) I<. 1 (I Z - '0 I= Po)
and If(z)I<'1 (Iz-'II=PI) and, hence, by the maximum modulus prin
ciple,

Ilfll <. 1.
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Also from the definition

ISS

(1 ~ k ~ N),

and so the proof is complete. I

4. FINITELY CONNECTED DOMAINS BOUNDED BY JORDAN CURVES

COROLLARY 4.1. Given Ok E: with 0kl ~ I (k = l... .. N). Let D be a
finitely connected open domain bounded by Jordan curves, and let (I .... , (v be
given distinct points of cD. Then there exists a function F(z) in A (D) such
that

IIFII~ I and

Proof It is known that there is a mapping 9(z) which is a
homeomorphism from D onto the closure of a domain of the kind considered
in Corollary 3.1 and which is analytic in D. (See 15. Chap. IX. in particular.
Theorems IX, 2, 35 I.)

Let wk = ¢((k) and consider the function f(z) of Section 3 relative to the
wk and Ok' If F(z) =f(r/J(z»), then F(z) is analytic in D. continuous on D.
F((k)=Ok (I ~k~N) and IIFll~ 1. I

5. EXPLICIT CONSTRUCTIONS IN SPECIAL CASES

Explicit constructions of functions f(z) in A (D). satisfying

Ilfll~ I and (7)

have so far only been given for a disc and a domain between two circles. We
now give further constructions based on these.

(i) Ellipse. Suppose D is the elliptical region Iw + J(I1"- I) < p
(p> 1), wk are given points on cD. and Ok are given in (lOki ~ 1). Let
N = 2n, Zk = p-1lwk + J(wr=T)], z". k = Zk Ip 2 (k = \,. ... n). and define

"
f(w)= ~ 0k1Pk(P Ilw+V(w 2 -1)1)+Pk(P Ilw-J(w 2 -1)I)f.

k 1

where P k is as defined in Section 2. Then f has the properties (7). For
f(w) = L: °kl Pk(z) + Pk(z -I p 2) f, where pz = w + J(w 2 I), is an analytic
function of z + Zip 2 and, hence, of w. Also .!(wk) =
L OdPk(Zk) + Pk(z" + klf = Ok from Theorem 2.2.
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(ii) Eliptical ring: Ellipse with a slit. The construction of Section 3
with (0 = (I = 0 and N = 2n leads immediately to a corresponding
construction for the elliptical ring

(Po> 1),

under the conformal mapping

Z=W+V(W2~1),

For the function F(w) =f[w +~-l)l, where f is the function of
Corollary 3.1, is in A(D) and satisfies (7) (withf, z replaced by F, w).

In the case Po = 1, D degenerates into the region between a slit
Iw+J(WT-l)I=1 (i.e., -1~w~l, w real) and an ellipse, where we
differentiate between the upper and lower edges of the slit in defining aD and
the class A(D).

6. INTERPOLATION PROJECTIONS

THEOREM 6.1. For any finitely connected open domain D bounded by
Jordan curves, the projection In from A(D) onto polynomials of degree n - 1
which interpolate in n given points {zd of aD, has Chebyshev norm

n

IIInl1 = sup L Ilk(z)l,
2 k~ I

where lk are the fundamental polynomials (2) in the Lagrange interpolation
formula.

Proof This follows immediately from Corollary 4.1 and the discussion
of Section 1. I

For multiply connected regions, polynomials in z are not really the most
appropriate approximation subspaces, and so we now consider some
important special cases.

THEOREM 6.2. For the open doubly connected domain D between the
circles Iz - (01 = Po and Iz - (II = PI (PI <Po), the projection I n •m on
polynomials of degree n in (z - (1)-1 and m - 1 in z - (0 which interpolate
in n + m given points {Zk} of aD, has Chebyshev norm

n+m
IIIn.mll = sup L ILk(z)l,

2 k= I



where
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k=I, ...,n+m. (8)

Proof Clearly L k(Z) are the fundamental polynomials in the relevant
Lagrange-type interpolation formula

11' m

The result, therefore, follows from Corollary 4.1 by extending the treatment
of Section 1. (See 161, where this case is discussed in detail with numerical
results.) I

COROLLARY 6.3. For the open elliptical ring D: I ~ Po < ! H' \.

/(w 2
- I) I <PI bounded by two ellipses with foci ± 1. or in the degenerate

case Po = I, for an ellipse D with a slit between its foci ± L the projection I;;'
from A (D) onto functions of the form

A//(w) + j(\I'2 -- I) 8// 1(\1'), (9)

which interpolate in 2n + I given points i w, I of cD, has Chebyshel' norm

2n ' I

11/,~II=sup \' IL,lw+j~~2-1)I!.
II' 1\-1

where L, is defined by (8) for SI = O. In the case PII = L H'e differentiate
between the upper and lower edges of the slit in deflning ?D and the class
A(D).

Proof This result follows immediately from Theorem 6.2. by setting
So = SI = 0, m = n + I, and identifying I; with 1

"
,//.1 under the conformal

mapping z=w+/(w 2 -1). ISince w=~(z+z I) and y(w!-I)=
! (z - z·· I), the form (9) corresponds to a polynomial of degrees II in both
z·landz·1 I

Note that Corollary 6.3, for the case Po = L is particularly relevant to
applications in fracture mechanics. Indeed an approximation of a form
equivalent to (9) is frequently used to represent a complex stress function for
an elastic body having a straight crack between w = ± I. For example,
Erdogan 171 uses (9) in differentiated form to obtain approximate solutions
to crack problems.
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7. MULTIVARIATE FUNCTIONS

Clearly all the results in this paper may be extended to functions of
several complex variables, and the reader is referred to r8] for a discussion
of the details.

REFERENCES

I. E. W. CHENEY AND K. H. PRICE, Minimal projections, in "Approximation Theory" (A.
Talbot, Ed.), pp. 261-290, Academic Press, London/New York, 1970.

2. K. O. GEDDES, Chebyshev nodes for interpolation on a class of ellipses, in "Theory of
Approximation with Applications" (A. Law and B. N. Sahney, Eds.), pp.155-170,
Academic Press, London/New York, 1976.

3. W. RUDIN, Boundary values of continuous analytic functions, Proc. Amer. Math. Soc. 7
(1956); in "Banach Spaces of Analytic Functions" (K. Hoffman, Ed.), pp. 81-82, Pren
tice-Hall, Englewood Cliffs, N.J., 1962.

4_ L. BRUTMAN, On optimal and almost optimal interpolation operators, in "Workshop on
Approximation Theory and its Applications," Technical report, Technion, Haifa, 1981.

5. M. TSUJI, "Potential Theory in Modern Function Theory," Chelsea, New York, 1975.
6. J. C. MASON, Near-minimax interpolation by a polynomial in z and z -Ion a circular

annulus,IMA J. Numer. Anal. I (1981),359-367.
7. F. ERDOGAN, The stress distribution in an infinite plate with two collinear cracks subject to

arbitrary loads in plane, in "Proceedings of the 4th National Conf. on App!. Mech.,
U.S.A., June 1962," pp.547-553.

8. J. C. MASON, Minimal projections and near-best approximations by multivariate
polynomial expansion and interpolation, in "Multivariate Approximation, Vol. II" (W.
Schempp, Ed.), pp. 241-254, Internal. Ser. Numer. Math. No.6!. Birkhiiuser, Basel, 1982.


